Towards Context-based Epistemic Logic

Zhaoqing Xu Phil Dept. of Peking University April 7, 2010

Contents

- Introduction
- Skepticism and Epistemic Contextualism
- Epistemic Logic & Context Logic
- Foundations of Context-based Epistemic Logic
- Candidates of CEL: Static vs. Dynamic
- Conclusion and Future Work
- References

Introduction

- Purpose:
- Context-based Epistemic Logic (CEL) = the logic of context-sensitive knowledge.
- (Traditional) Epistemic Logic (EL) = the logic of knowledge;
 - CSK is a notion abstracted from Epistemic
 Contextualism solution to Skepticism, which also being used to solve some other epistemic puzzles.

Introduction (cont'd)

- Motivations:
 - 1. To provide a new approach to the study of limited rationality (LA) in Epistemic Logic.
 - Nowadays, the study of LA is extremely popular not only in the field of Epistemic Logic, but also in other fields like Game theory, Decision theory, Social software, and Artificial Intelligence (AI).

- As far as I know, there are mainly two approaches to deal with LA in EL:
 - Through awareness: (Cf. Fagin, 1988; & de Jager, 2009);
 - Through accessible: (Cf. Pacuit et al, 09).

- 2. To strengthen further the connection between epistemology and epistemic logic.
- Quote:
- "At first sight, the modern agenda of epistemology has little to do with logic... Now, epistemic logic started as a contribution to epistemology, or at least a tool in its modus operandi, with the seminal book *Knowledge and Belief* (Hintikka's, 1962,2005)."

---from (van Benthem, 2006)

Skepticism and EC

Skeptical Argument (SA)

- **Basic form** (DeRose, 1995):
 - P1: I don't know that not-H.
 - P2: If I don't know that not-H, then I don't know that O.

8

- C: So, I don't know that O.

SA (cont'd)

- Example:
 - P1: I don't know that I am not a BIV.
 - P2: If I don't know that I am not a BIV, then I don't know that I have two hands.
 - C: So, I don't know that I have two hands.

Epistemic Contextualism (EC)

• Quote:

"...EC is the view that the proposition expressed by a given

knowledge attribution (like "A knows that P" or "A knows that

not P") depends upon the context in which it is uttered."

--- from (Rysiew, 2009).

10

EC's solution to Skepticism

• The presence of P1 has changed the context, such that a higher standard of knowledge are required.

• Advantages: explain the persuasiveness of SA & protect the correctness of our ordinary knowledge.

11

Further Question

• **Philosophers:** What is a context?

- Cf. (Barke,2004); epistemic assumptions.

- Logicians: How to represent a context?
 - Cf. (Stalnaker,1998); a set of possible worlds (or states).

Epistemic Logic & Context Logic

Epistemic Logic (EL)

• Language (L_E):

$\phi ::= p |\neg \phi| \phi \land \psi | K \phi;$

Where $p \in P$.

Note: K is the abbreviation for K_a , since I only consider one agent *a* for simplicity.

• Epistemic model :

$$M = \langle W, \approx, V \rangle$$

Where:

- W is a non-empty set;
- $-\approx$ is an equivalence relation on W;
- V is a valuation mapping each $p \in P$ to a subset of W, i.e., $V(p) \in 2^{W}$.

• Semantics:

M, w|=p, iff w \in V(p); M, w|=K ϕ , iff for all w' $\in \approx_w$, M, w'|= ϕ ; where $\approx_w = \{v | v \in W \& w \approx v\}$.

- Axiomatization (S5):
 - Taut: All instantiations of propositional tautologies;
 - **K**: $K(\phi \rightarrow \psi) \rightarrow (K\phi \rightarrow K\psi);$
 - $\mathbf{T}: \mathbf{K} \boldsymbol{\varphi} \rightarrow \boldsymbol{\varphi}; \qquad (Truth)$
 - $4:K\phi \rightarrow KK\phi$; (Positive introspection)
 - 5: $\neg K\phi \rightarrow K \neg K\phi$; (Negative introspection)

17

- **MP**: From ϕ and $\phi \rightarrow \psi$, infer ψ ;
- N: From ϕ , infer K ϕ .

2010/4/7

- Notation:
 - We denote EL-validity and EL-provability of φ as "|=_{EL} φ " and "|-_{EL} φ ", respectively.
- Completeness of EL:
 - **Theorem 1**: For any φ , $\models_{EL} \varphi$ iff $\models_{EL} \varphi$.
 - -*Proof.* Cf. (van Ditmarsch et al, 2007, Chapter 7).

Context Logic (CL*)

• Language (L_C):

$\phi ::= p |\neg \phi| \phi \land \psi | [X] \phi | [U] \phi;$

Where $p \in P$, and $X \in C$.

C is the index set of contexts, [X] is context operator, [U] is the universal modality.

Duals:

$$<\!\!X\!\!>\!\!\phi=\!\!\neg[X]\neg\phi;<\!\!U\!\!>\!\!\phi=\!\!\neg[U]\neg\phi.$$

• Context model :

$M = \langle W, R, V \rangle$

Where:

- W is a non-empty set;
- R is a function mapping each $X \in C$ to a subset of W, i.e., $R(X) \in 2^W$; *Henceforth we write R_X for R(X).
- V is a valuation mapping each $p \in P$ to a subset of W, i.e., $V(p) \in 2^{W}$.

• Semantics:

M, w|=p, iff w \in V(p); M, w|=[X] ϕ , iff for all w' \in R_X, M, w'|= ϕ ; M, w|=[U] ϕ , iff for all w' \in W, M, w'|= ϕ .

- Axiomatization (K45^{XY}):
 - Taut plus the following, where $X, Y \in C \cup \{U\}$:
 - $\ \mathbf{K}^{\mathbf{X}}: [\mathbf{X}](\phi {\rightarrow} \psi) {\rightarrow} ([\mathbf{X}]\phi {\rightarrow} [\mathbf{X}]\psi);$
 - $\mathbf{T}^{\mathbf{U}}: [\mathbf{U}] \boldsymbol{\varphi} \boldsymbol{\rightarrow} \boldsymbol{\varphi};$
 - $\mathbf{4}^{XY}: [X] \phi \rightarrow [Y] [X] \phi;$
 - $5^{XY}:<\!\!X\!\!>\!\!\phi\!\!\rightarrow\!\![Y]<\!\!X\!\!>\!\!\phi;$
 - **MP**: From ϕ and $\phi \rightarrow \psi$, infer ψ ;
 - $\mathbf{N}^{\mathbf{X}}$: From φ , infer [X] φ .

2010/4/7

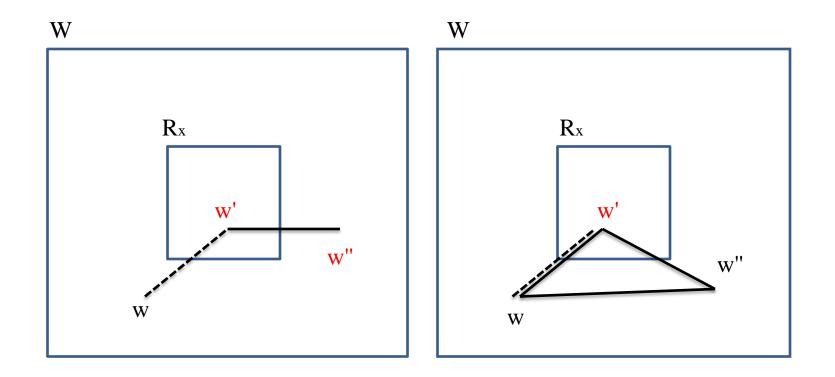
- Notation:
 - We denote CL-validity and CL-provability of φ as "|=_{CL} φ " and "|-_{CL} φ ", respectively.
- Completeness of CL:
 - **Theorem 2**: For any φ , $\models_{CL} \varphi$ iff $\models_{CL} \varphi$.
 - -*Proof.* Cf. (Grossi et al, 2008).

Foundations of CEL

Foundations of CEL

• Context-based epistemic model :

 $M = \langle W, R, \approx, V \rangle$


Where:

- W is a non-empty set;
- R is a function mapping each $X \in C$ to a subset of W, i.e., $R_X \in 2^W$;
- $-\approx$ is an equivalence relation on W;
- V is a valuation mapping each $p \in P$ to a subset of W, i.e., $V(p) \in 2^{W}$.

Foundations of CEL (cont'd)

- Definitions of CSK:
 - Static style:
 - M, w|=[X]K ϕ , iff for all w' $\in R_X$, M, w'|=K ϕ , iff for all w'' $\in \approx_{w'}$, M, w'|= ϕ .
 - Dynamic style:
 - M, w|=K^[X] ϕ , iff for all w' $\in \approx_w \cap R_X$, M, w'|= ϕ .
 - If we allow X to be U, then the standard epistemic operator K revives as K^[U].

Contrasts

Static: $w \models [X] K \phi$, iff $w' \models \phi$ and $w'' \models \phi$.

Dynamic: $w \models K^{[X]} \varphi$, iff $w' \models \varphi$.

Figure 1. Definitions of CSK: Static vs. Dynamic

2010/4/7

27

Contrasts (cont'd)

- For static-style definition:
 - (i) CSK is defined in term of context-free knowledge;* (which seems to be questionable.)
 - (ii) $K\phi \rightarrow [X]K\phi$ is not valid;
 - (iii) Nonetheless, $[X]K\phi \rightarrow [X]\phi$ is valid.
- For dynamic-style definition:
 - (i) CSK is defined independently;
 - (ii) $K\phi \rightarrow K^{[X]}\phi$ is valid;
 - (iii) Nonetheless, $K^{[X]}\phi \rightarrow [X]\phi$ is not valid.

Contrasts (cont'd)

- Static-style seems to be consistent with an objective understanding of context, since
 [X]Kφ→[X]φ is valid. (*However, I haven't discovered any concrete example yet.)
- Dynamic-style seems to work well with the subjective understanding of context (esp. as common assumptions). Example: (Cf. next page)

SA in Dynamic CSK

• For example:

p: I am not a BIV;q: I feel that I have two hands;r: I have to hands.

The model is indicated as **Figure 2** on the right side, where $V(p)=\{u, v\}; V(q)=\{u, s\}; V(r)=\{u\}.$

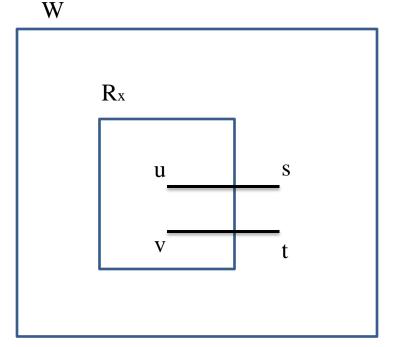


Figure 2. SA in Dynamic CSK

SA in Dynamic CSK (cont'd)

- (i) In all states, I know my feelings (i.e., either I feel that I have two hands or not).
- (ii) If w is the real state, then with the assumption of X, I know that I have two hands and I am not a BIV.
- (iii) When P1 of SA appears, the context has been extended to contain either s or t (depending upon which of u and v take as the actual state).
- (iv) So, the extension of context corresponds to the retraction of assumption. *(In next paper, I will revisit this example with more details after I work out the whole dynamic mechanics of DCEL.)

Candidates: SCEL & DCEL

• Language (L_{SCE}):

$$\phi ::= p |\neg \phi| \phi \land \psi | K \phi | [X] \phi | [U] \phi;$$

Where $p \in P$, and $X \in C$.

• Semantics:

M, w|=K ϕ , iff for all w' $\in \approx_w$, M, w'|= ϕ ; M, w|=[X] ϕ , iff for all w' $\in R_X$, M, w'|= ϕ ; M, w|=[U] ϕ , iff for all w' \in W, M, w'|= ϕ .

• Axiomatization:

- All axioms and rules of EL and CL, plus the axiom schemas below:
- $\mathbf{4^{XK}}: [X]\phi {\rightarrow} K[X]\phi;$
- $5^{XK}: <\!\!X\!\!>\!\!\phi \!\!\rightarrow\!\!K\!\!<\!\!X\!\!>\!\!\phi.$
- *Remark: Knowledge operator is semi-context, since
 - the following schemas are generally invalid:
 - 4^{KY} : $K\phi \rightarrow [Y]K\phi$;
 - $5^{KY}: \langle K \rangle \phi \rightarrow [Y] \langle K \rangle \phi$.

• Notation:

- We denote SCEL-validity and SCEL-provability of φ as " $|=_{SCEL}\varphi$ " and " $|-_{SCEL}\varphi$ ", respectively.

- Completeness of CL:
 - **Theorem 3**: For any φ , $\models_{SCEL} \varphi$ iff $\models_{SCEL} \varphi$.
 - -*Proof.* Cf. (Xu, forthcoming).

DCEL

• Language (L_{DCE}):

 $\phi ::= p |\neg \phi| \phi \land \psi | [X] \phi | [U] \phi | K^{[X]} \phi | K^{[U]} \phi;$

Where $p \in P$, and $X \in C$.

• Semantics:

M, w|=[X] ϕ , iff for all w' $\in R_X$, M, w'|= ϕ ;

M, w|=[U] ϕ , iff for all w' \in W, M, w'|= ϕ ;

M, w|=K^[X] ϕ , iff for all w' $\in \approx_{w} \cap R_{X}$, M, w'|= ϕ ;

M, w|=K^[U] ϕ , iff for all w' $\in \approx_{w} \cap W$, M, w'|= ϕ .

Notice that, K^[U] is the same as K of SCEL, so DCEL is an extension of SCEL, and henceforth we write K^[U] as K.

- Axiomatization:
 - All axioms and rules of SCEL, plus the axiom schemas and rule below, where $X \in C$:
 - $\mathbf{K}^{\mathbf{K}[\mathbf{X}]}: \mathbf{K}^{[\mathbf{X}]}(\boldsymbol{\varphi} {\rightarrow} \boldsymbol{\psi}) {\rightarrow} (\mathbf{K}^{[\mathbf{X}]} \boldsymbol{\varphi} {\rightarrow} \mathbf{K}^{[\mathbf{X}]} \boldsymbol{\psi});$
 - $K \phi \vee [X] \phi \rightarrow K^{[X]} \phi;$
 - $N^{K[X]}$: From φ , infer $K^{[X]}\varphi$.

• Notation:

- We denote DCEL-validity and DCEL-provability of φ as " $\mid=_{DCEL}\varphi$ " and " $\mid-_{DCEL}\varphi$ ", respectively.

- Completeness of DCEL:
 - **Theorem 3**: For any φ , $\models_{DCEL} \varphi$ iff $\models_{DCEL} \varphi$.
 - -*Proof.* Cf. (Xu, forthcoming).

Conclusion

- I have introduced the philosophical background of CSK and preliminaries of CEL: EL & CL;
- After that, I have proposed two distinct ways of defining CSK and made some detailed contrast;
- Further, I have obtained two candidate systems of CEL (namely, SCEL & DCEL) and proved their completeness.

Future Work

- Future work:
 - Develop the dynamic version of SCEL and DCEL;
 - (E.g., DCL; Cf. Aucher et al, 2009).
 - Compare with update semantics;
 - (Cf., Veltman, 1996; & de Jager, 2009).
 - Extend with more philosophical discussion;
 - (Cf. Lewis, 1996).

1. (Aucher et al, 2009) G. Aucher, D. Grossi, A. Herzig, and E. Lorini: "**Dynamic context logic**". In: LORI 2009, X. He, J. Horty, and E. Pacuit (Eds.). LNAI 5834, pp.15-26.

2. (Barke, 2004) A. Barke:"**Epistemic contextualism**". In: Erkenntnis 61,pp.353-373, 2004.

3. (Crossi et al, 2008) D. Grossi, J.-J. C. Meyer, F. Dignum: "**The many** faces of counts-as: A formal analysis of constitutive-rules". In:Journal of Applied Logic 6(2), pp.192-217, 2008.

4. (de Jager, 2009) T. de Jager: "*Now that you mention it, I wonder...': Awareness, Attention, Assumption*. PhD Dissertation, ILLC, University of Amsterdam, 2009.

5. (DeRose, 1995) K. DeRose: "**Solving the Skeptical Problem**". In: The Philosophical Review 104.1 (1995), pp. 1-7, 17-52.

6. (Gardner & Zarfaty,2007) P. Gardner, and U. Zarfaty: "An introduction to context logic". In: Logic, Language, Information, and Computation. (LLIC4576). Springer, 2007.

- 7. (Lewis, 1996) D.Lewis: "**Elusive knowledge**". In: Australasian Journal of Philosophy 74.4 (Dec.1996), pp.549-567.
- 8. (Rysiew, 2009) P. Rysiew: "**Epistemic contextualism**", The Stanford Encyclopedia of Philosophy (Spring 2009 Edition), Edward N.Zalta (ed.), URL = <http://plato.stanford.edu/archives/spr2009/entries/contextualismepistemology/>.

References (cont'd)

- 9. (Stalnaker, 1998) R. Stalnaker: "**On the representation of context**". In: Journal of Logic, Language, and Information 7, pp.3-19,1998.
- 10. (van Ditmarsch et al, 2007) H.van Ditmarsh, W.van der Hoek, B.Kooi: *Dynamic Epistemic Logic*. Sysnthese Library series, vol. 337. Springer, Heideberg, 2007.
- 11. (Veltman, 1996) F. Veltman: "**Defaults in update semantics**". In: Journal of Philosophical Logic 25 (1996),pp.221-261.
- 12. (Xu, forthcoming) Z. Xu: "**Towards context-based epistemic logic**". Forthcoming.

Thank you!